
Eur. Phys. J. D 5, 59–63 (1999) THE EUROPEAN
PHYSICAL JOURNAL D
c©

EDP Sciences
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Abstract. The results of ab initio calculation of energies, hyperfine structure constants and static polar-
izabilities for several low-lying levels of barium are reported. The effective Hamiltonian for the valence
electrons Heff has been constructed in the frame of CI+MBPT method and solutions of many electron
equation HeffΦn = EnΦn were found. Using the wave functions obtained the hyperfine structure constants
and static polarizabilities were calculated.

PACS. 31.15.Ar Ab initio calculations – 32.10.Dk Electric and magnetic moments, polarizability –
32.10.Fn Fine and hyperfine structure

1 Introduction

In this paper we report results of an ab initio calculation
of static polarizabilities and hyperfine structure (hfs) con-
stants for several low-lying levels of barium. In such cal-
culations the accuracy of atomic wave function is tested
twice, at large and short distances. Indeed, at short dis-
tances atomic wave function can be checked by the com-
parison of the calculated hfs constants with the experi-
mental ones. The latter are usually known to a very good
accuracy, providing a good test of the quality of the wave
function near the nucleus.

Oscillator strengths and polarizabilities are, in con-
trast, determined by the wave function behavior at large
distances. Usual experimental accuracy for the oscillator
strengths and scalar polarizabilities is on the level of few
percent. This is close or even less than the accuracy of
precise atomic calculations (see, for example, calculations
for Cs [1]). On the other hand, tensor polarizabilities can
be measured with the accuracy of 1% or better (see, for
instance, [2,3]). Thus, it is possible to test atomic wave
function at large distances at 1% level. Note that 1% accu-
racy is crucial for calculations of parity non-conservation
effects in atoms, because it allows to test predictions of
the Standard model at small momentum transfer [1,4]. So
far such precision has been achieved only for one-electron
atoms Cs and Fr [5–7]. In this work we consider a much
more complicated Ba atom.

We consider barium as a two electron atom with a
xenon-like core. Valence-valence correlations are taken
into account by configuration interaction (CI) method,
while core-valence and core-core correlations are treated
within the many body perturbation theory (MBPT). The
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latter is used to construct an effective Hamiltonian for
the CI problem in the valence space. The details of the
method can be found in the papers [8,9]. Application of
this method to calculations of hfs constants has been dis-
cussed in [10]. Here we apply the same technique for calcu-
lations of atomic polarizabilities. In particular, we calcu-
lated scalar and tensor polarizabilities for five even-parity
states 1S0(6s2), 3DJ(6s5d), and 1D2(6s5d) and four odd-
parity states 3P oJ (6s6p) and 1P o1 (6s6p).

2 General formalism

Static polarizability of the sublevel |a, J,M〉 in a DC elec-
tric field E = E ẑ is defined as:

∆Ea,J,M = −
1

2
αa,J,ME

2

= −
1

2

(
α0,a,J + α2,a,J

3M2 − J(J + 1)

J(2J − 1)

)
E2,

(1)

where ∆Ea,J,M is an energy shift and α0, α2 define scalar
and tensor polarizabilities correspondingly. Being a second
order property, αa,J,M can be expressed as a sum over
unperturbed intermediate states:

αa,J,M = −2
∑
n

|〈a, J,M |Dz|n, Jn,M〉|2

Ea −En
, (2)

where D is a dipole moment operator, En is an unper-
turbed energy of a level n, and the sum runs over all states
of opposite parity. The formalism of the reduced matrix
elements allows to write explicit expressions for the scalar



60 The European Physical Journal D

and tensor parts of the polarizability:

α0,a,J =
−2

3(2J + 1)

∑
n

|〈a, J ||D||n, Jn〉|2

Ea −En
, (3)

α2,a,J = 4

(
5J(2J − 1)

6(2J + 3)(2J + 1)(J + 1)

)1/2

×
∑
n

(−1)J+Jn+1

{
J 1 Jn

1 J 2

}
|〈a, J ||D||n, Jn〉|2

Ea −En
, (4)

and reduced matrix elements are defined as follows:

〈n, J ′,M ′|Dq|a, J,M〉

= (−1)J
′−M′

(
J ′ 1 J

−M ′ q M

)
〈n, J ′||D||a, J〉. (5)

In order to use equations (2–4) in calculations one needs
to know the complete set of eigenstates of the unperturbed
Hamiltonian. It becomes practically impossible when di-
mension of a CI space exceeds few thousand determinants.
It is known, that it is much more convenient to solve in-
homogeneous equation instead of the direct summation
over the intermediate states [11]. The general technique of
the solution of an inhomogeneous equation was reported
in [12].

Let us consider the solution of the following equation:

(Ea −H)|Xa,M′〉 = Dq|a, J,M〉, (6)

where q = 0,± 1 and M ′ = M + q. Obviously, the right
hand side in (2) can be expressed in terms of the function
Xa,M (note that r0 ≡ rz):

αa,J,M = −2〈a, J,M |D0|Xa,M 〉. (7)

If we want to rewrite equations (3, 4) in terms of the func-
tion Xa,M′ , we need to decompose the latter in terms, that
correspond to particular angular momenta Ji. Generally
speaking, there can be three such terms with Ji = J, J± 1:

Xa,M′ = Xa,J−1,M′ +Xa,J,M′ +Xa,J+1,M′ . (8)

Now, with the help of the functions Xa,J′,M′ the equa-
tions (3, 4) are reduced to:

α0,a,J = (−1)q+1 2

3(2J + 1)

×
∑

J′=J,J± 1

(
J ′ 1 J

−M ′ q M

)−2

〈a, J,M |D−q|Xa,J′,M′〉,

(9)

α2,a,J = 4(−1)q+1

(
5J(2J − 1)

6(2J + 3)(2J + 1)(J + 1)

)1/2

×
∑

J′=J,J± 1

(−1)J+J′

{
J 1 J ′

1 J 2

}−2(
J ′ 1 J

−M ′ q M

)−2

× 〈a, J,M |D−q|Xa,J′,M′〉. (10)

Note, that these equations are valid only if 3j-symbols
on the right hand side do not turn to zero. Thus, it is
usually necessary to solve (6) for q = ± 1, rather than for
q = 0. Indeed, for q = 0 the 3j-symbol that correspond,
for instance, to J ′ = J = 1 and M ′ = M = 0, turns to
zero.

If we know the solution of the equation (6) and its
decomposition (8), then expressions (9, 10) allow us to
find both scalar and tensor polarizabilities of the state
|a, J〉. Moreover, the same functions Xa,J′,M′ can be also
used to find other second order atomic properties, such
as amplitudes of Stark-induced E1 transitions or parity
nonconserving E1 transitions between the states of the
same nominal parity (see, for example [13]).

3 Calculation details

In this section we give a brief description of the calcula-
tion procedure putting special emphasis to the solution
of the equation (6). Details of the construction of the ef-
fective Hamiltonian with the help of the MBPT diagram-
matic technique can be found in [8,9]. Effective operators
for hfs and dipole amplitudes include random phase ap-
proximation (RPA) corrections and several smaller MBPT
corrections as described in [10].

3.1 Orbital basis set and CI space

This calculation is done in the V N approximation, that
means that core orbitals are obtained from the Dirac-
Hartree-Fock (DHF) equations for a neutral atom (we
use DHF computer code [14]). The basis set for the va-
lence electrons includes 6s, 6p and 5d DHF orbitals and
7s−16s, 7p−16p, 6d−13d, 4f−12f , and 5g−7g virtual or-
bitals. The latter were formed in two steps. On a first
step we construct orbitals with the help of a recurrent
procedure, which is similar to that suggested in [15] and
described in [9,13]. After that we diagonalize the V N DHF
operator to obtain the final set of orbitals.

For the described orbital basis set the complete CI is
made for both even-parity and odd-parity levels. Many
electron wave functions are the linear combinations of the
Slater determinants with a given Jz . That means that no
symmetrization with respect to angular momentum J is
made.

3.2 Effective operators

Within the CI+MBPT method the equation (6) is approx-
imated by the equation in the valence space

(Ea −Heff )|Xa,M′〉 = Deff ,q|a, J,M〉, (11)

with the effective operators, which are found by means of
the MBPT. The effective Hamiltonian for the two valence
electrons is formed within the second order MBPT [8].
Only excitations of the 26 uppermost core electrons from
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the shells n = 4, 5 were included. We used RPA for the
effective dipole moment operator (see, for example, [16]).
We have checked that MBPT corrections to Deff , which
are not included in RPA are small, if RPA equations are
solved in the V N−2 approximation, i.e. 6s electrons are
excluded from the self-consistency procedure. The more
detailed description of the effective operator formalism is
given elsewhere [10].

In order to evaluate the right hand side of the
equation (11), the matrix eigenvalue equation with the
effective Hamiltonian has been solved for five low-lying
even-parity states 1S0(6s2), 3DJ(6s5d), J = 1, 2, 3, and
1D2(6s5d) and four odd-parity states 3P oJ (6s6p), J =
0, 1, 2 and 1P o1 (6s6p).

3.3 Inhomogeneous equation

Technically there is no difference between equations (6,
11), and to simplify the notations we will speak about the
solution of equation (6). This is a matrix equation with a
large, sparse and symmetrical matrix. For the orbital basis
set, in which DHF operator is diagonal, the nondiagonal
matrix elements correspond to the residual two-electron
interaction and are small. That allows to look for an iter-
ative solution of the matrix equation (6). Let X

(n)
a be an

nth approximation and R
(n)
a is the corresponding residue

(here we omit quantum number M):

R(n)
a = Ya − (Ea −H)X(n)

a , (12)

where Ya is the right hand side of (6). We now use the

diagonal of the matrix H to form a probe vector C
(n)
a and

a new approximate solution X
(n+1)
a :

C(n)
a = (Ea − diag(H))

−1
R(n)
a , (13)

X(n+1)
a = k1X

(n)
a + k2C

(n)
a +

N∑
l=1

kl+2Ψl, (14)

where coefficients ki are found from a minimum residue
condition and Ψl are some (approximate) eigenfunctions
of the effective Hamiltonian.

The procedure (12–14) provides the monotonous de-
crease of the residue. For the ground state (a = 0), this
procedure converges rather rapidly even for N = 0. For ex-
cited states convergence can be significantly slowed down
when there are eigenvalues of the effective Hamiltonian,
which are close to Ea. Suppose that there are N eigen-
functions of the opposite parity Ψl and |El − Ea| � 1,
l = 1, . . .N . We can speed up the convergence by adding
these functions to the right hand side of (14) and find a
minimum of the residue with respect to all N + 2 coef-
ficients ki. Note that it does not require any additional
time-consuming computations because the product HΨl
has to be calculated only once. Such iterative procedure
works fine, provided that all most important eigenvectors
and eigenvalues have been found beforehand.

Table 1. Energy levels for Ba in V N approximation.

Level Eval (a.u.) ∆ (cm−1) Experiment (cm−1)a

1S0 −0.55916b 0 0
3D1 −0.51786 9064 9034
3D2 −0.51700 9254 9216
3D3 −0.51518 9653 9597
1D2 −0.50678 11496 11395
3P o0 −0.50319 12284 12266
3P o1 −0.50150 12656 12637
3P o2 −0.49750 13533 13515
1P o1 −0.47600 18252 18060

a Reference [21].
b The absolute value of this energy corresponds to the sum of
the two first ionization potentials of barium, for which experi-
ment gives 0.559148 a.u. [21].

3.4 Decomposition of the function Xa,M0

When the function Xa,M′ is found, the decomposition (8)

is easily done with the help of the following operators P̂i:

Xa,Ji,M′ = P̂iXa,M′ , (15)

P̂i = Ni

(
Ĵ2 − Jk(Jk + 1)

)(
Ĵ2 − Jl(Jl + 1)

)
, (16)

Ni = (Ji(Ji + 1)− Jk(Jk + 1))
−1

× (Ji(Ji + 1)− Jl(Jl + 1))
−1
,

where Ĵ is the angular momentum operator and Ji 6= Jk 6=
Jl ∈ {J − 1, J, J + 1}.

Let us point out that the operator P̂i is not a projector
on a subspace with J = Ji, but it works as such when ap-
plied to a three component function like Xa,M′ . Indeed, P̂i
eliminates components with Jk 6= Ji, Jk ∈ {J−1, J, J+1}
and leaves the component with Jk = Ji unchanged. If
|a, J,M〉 in the right hand side in (6) is not an exact eigen-
vector of the operatorH, or Xa,M′ is not an exact solution
of the equation (6), then the latter can have admixtures
with other angular momenta. In this case functions de-
fined by (15) are not eigenfunctions of Ĵ2 and are not
orthogonal to each other. This provides us with a simple
check whether the function Xa,M′ can be decomposed in
three components with definite angular momenta or not.
It is sufficient to check normalization of the right hand
side and the left hand side of the equation (8). So, oper-

ators P̂i allow not only to decompose the function Xa,M′

in terms with definite angular momenta, but also to check
the quality of this function.

4 Results and discussion

Results of the solution of the eigenvalue problems for even-
parity and odd-parity levels are presented in Table 1.
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Table 2. Magnetic dipole (A) and electric quadrupole (B) hyperfine structure constants of low-lying levels for 137Ba. The
electric quadrupole moment is taken to be 0.245 b.

3D1
3D2

3D3
1D2

3P o1
3P o2

1P o1

A (MHz)

Dirac-Fock −430 267 402 38 724 594 75

CI −353 306 350 − 25 794 595 − 46

CI + MBPT −547 405 443 −102 1160 845 −107

Experiment −521a 416a 457a − 82b 1151c — −109d

Theory (MCDF) [20] — 320 — − 13 804 580 − 53

B (MHz)

Dirac-Fock 12.7 17.7 32.2 33.5 −23.2 40.0 43.2

CI 12.5 18.1 31.9 39.7 −26.6 47.0 26.8

CI + MBPT 17.7 26.8 47.4 67.2 −43.2 77.4 58.4

Experiment 17.9a 25.9a 47.4a 59.6b −41.6c — 51d

Theory (MCDF) [20] — 47.9 — 40.8 52.5 61.4 −7.7

a[22]; b[23]; c[24]; d[25].

These results are close to our earlier calculations [9]
and to the results of the recent paper [17], where the same
method was used. The typical accuracy for the energy
intervals is better than 100 cm−1 with the only exception
of 1P o1 level, where the error is almost 200 cm−1. Note,
that typical error of the coupled-cluster calculation of the
same levels of Ba is 200 ÷ 400 cm−1 [18]. In [17] it was
shown, that agreement with the experiment can be further
improved if higher order MBPT corrections to the effective
Hamiltonian are included semiempirically. In particular,
in the second order of MBPT there is a large screening of
exchange interaction between 6s and 6p electrons, which
affects the splitting between states 3P oJ and 1P o1 . Higher
order corrections to this screening should be essential [19].

When the eigenvalue problem is solved, we can calcu-
late the hfs constants A and B (Tab. 2) and the polariz-
abilities of the corresponding states (Tab. 3). On the CI
stage our results for the constant A are close to those of
the paper [20], where the multi-configurational Dirac-Fock
(MCDF) method was used. It is seen that these results
strongly underestimate magnetic hfs for all levels. On av-
erage, MBPT corrections contribute 30%÷ 50% and even
more for small constants. The final accuracy of the theory
for the constant A appears to be about 3%÷ 5% (except
1D2-state), which is somewhat less than the accuracy of
the similar calculations for Tl [10]. It is probably the con-
sequence of the small numerical values of hfs constants for
Ba. Indeed, the largest hfs constant of the level 3P o1 is cal-
culated with the highest accuracy. For other levels there
are cancelations between contributions from 6s-electron
and either 5d- or 6p-electron. We have not found experi-
mental data for the level 3P o2 . MBPT corrections for this
level are of the typical size, cancelations of different con-
tributions are moderate, so we estimate the accuracy of
the theory for this level to be about 3% or better.

Similar situation takes place for the hfs constant B,
but here our results are significantly different from those

Table 3. Scalar and tensor polarizabilities (a.u.) of low-lying
levels for Ba.

Experiment Theory

conf. level α0 α2 α0 α2

6s2 1S0 268(22)a 0 264 0

6s5d 3D1 X + 16(4)b −53(1)b 383 − 60

6s5d 3D2 X + 4(4)b −69(1)b 372 − 79

6s5d 3D3 X −121(4)b 365 −141

6s5d 1D2 X − 109(44)b 86(2)b 266 81

6s6p 3P o0 0 − 13 0

6s6p 3P o1 0.169(28)c − 10 0.9

6s6p 3P o2 62 − 11

6s6p 1P o1 411(23)d − 43.1(4)e 409 − 51

a Reference [26];
b reference [27], scalar polarizabilities in this paper were mea-
sured relative to that of the level 3D3, which is denoted by X;
c reference [28];
d reference [29];
e reference [2].

of [20] already on the CI stage. The role of the MBPT
corrections is even higher here. These corrections almost
double the answer for the levels 1D2 and 1P o1 . So, it is not
surprise, that the accuracy of the theory for these levels is
not very high. Again, for the level 3P o2 the constant B is
unknown. In this case MBPT corrections contribute more
than 60%, so we can not guarantee the accuracy higher
than 15%.

In order to find polarizabilities we substitute eigen-
functions in equation (11) and solve corresponding inho-
mogeneous equation. After that equations (9, 10) give
us α0 and α2. Results of these calculations are listed
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in Table 3. Scalar polarizabilities for 1S0- and 3P o0 -levels
are known from the experiment. For the D-states scalar
polarizabilities were measured relative to that of the level
3D3. In Table 3 the latter is designated by X. If we assume
that X is equal to the corresponding theoretical value,
all experimental data for α0 agree with our calculations
within the experimental uncertainty.

It is seen that typically α2 is about an order of magni-
tude smaller than α0. This is due to the strong cancella-
tions between three terms of the sum (10). For this reason
the theoretical accuracy for α2 is significantly lower than
for α0. On the contrary, experimental data for α2 are much
more precise.

There are two main sources of errors in the calcula-
tions of polarizabilities. First one is the same as for the
hfs calculations, and connected with the inaccuracy in the
wave functions and effective operators (note that RPA cor-
rections to the dipole operator are much smaller than for
hfs operators). Second source of errors is the inaccuracy
in eigenvalues, that is specific to the calculations of po-
larizabilities. Normally, the errors associated with the lat-
ter are small, but they can become important (and even
dominant) when there are close levels of opposite parity.
In particular, that applies to levels 1D2 and 3P1, and, to
some extent, to other levels of configurations 6s5d and
6s6p. Indeed, the energy interval between levels 1D2 and
3P1 is underestimated by 7% (see Tab. 1). This interval
enters equations (1, 2) and potentially can cause a large
error. Fortunately, corresponding numerators are small,
because singlet-triplet amplitudes are suppressed. On the
other hand, this error is relatively enhanced for the ten-
sor polarizability, because of the strong cancellations of
different contributions, mentioned above.

In conclusion let us sum up the results. We have
found approximate solutions of many electron equation
HeffΦn = EnΦn for low-lying levels of barium. Then,
we tested the quality of the wave functions obtained at
large and short distances. To do this, we calculated hfs
constants and polarizabilitilies for the levels in question.
Calculations of polarizabilities of the excited states were
hampered due to the proximity of the levels of opposite
parity. Further improvement of theoretical accuracy for
these polarizabilities requires better agreement between
theoretical and experimental spectrum of the atom. That
can be done, if higher-order MBPT corrections to the ef-
fective Hamiltonian are included semiempirically [17,19].

This work was supported by Russian Foundation for Basic Re-
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